
2025/03/13 00:06 1/4 Andriod Debug Bridge

- https://docs.infomir.com.ua/

Andriod Debug Bridge

Android Debug Bridge (adb) is a versatile command line tool that lets you communicate with an
emulator instance or connected Android-powered device. It is a client-server program that includes
three components:

A client, which runs on your development machine. You can invoke a client from a shell by
issuing an adb command. Other Android tools such as the ADT plugin and DDMS also create adb
clients.
A server, which runs as a background process on your development machine. The server
manages communication between the client and the adb daemon running on an emulator or
device.
A daemon, which runs as a background process on each emulator or device instance.

You can find the adb tool in <sdk>/platform-tools/.

When you start an adb client, the client first checks whether there is an adb server process already
running. If there isn't, it starts the server process. When the server starts, it binds to local TCP port
5037 and listens for commands sent from adb clients—all adb clients use port 5037 to communicate
with the adb server.

The server then sets up connections to all running emulator/device instances. It locates
emulator/device instances by scanning odd-numbered ports in the range 5555 to 5585, the range
used by emulators/devices. Where the server finds an adb daemon, it sets up a connection to that
port. Note that each emulator/device instance acquires a pair of sequential ports — an even-
numbered port for console connections and an odd-numbered port for adb connections. For example:

Emulator 1, console: 5554
Emulator 1, adb: 5555
Emulator 2, console: 5556
Emulator 2, adb: 5557
and so on...

As shown, the emulator instance connected to adb on port 5555 is the same as the instance whose
console listens on port 5554.

Once the server has set up connections to all emulator instances, you can use adb commands to
access those instances. Because the server manages connections to emulator/device instances and
handles commands from multiple adb clients, you can control any emulator/device instance from any
client (or from a script).

Enabling adb Debugging

In order to use adb with a device connected over USB, you must enable USB debugging in the device
system settings, under Developer options.

On Android 4.2 and higher, the Developer options screen is hidden by default. To make it visible, go
to Settings > About phone and tap Build number seven times. Return to the previous screen to find
Developer options at the bottom.

Last update:
2019/05/17 11:23 stb_android:faq:android_debug_bridge https://docs.infomir.com.ua/doku.php?id=stb_android:faq:android_debug_bridge

https://docs.infomir.com.ua/ Printed on 2025/03/13 00:06

On some devices, the Developer options screen may be located or named differently.

Note: When you connect a device running Android 4.2.2 or higher to your computer, the system
shows a dialog asking whether to accept an RSA key that allows debugging through this computer.
This security mechanism protects user devices because it ensures that USB debugging and other adb
commands cannot be executed unless you're able to unlock the device and acknowledge the dialog.
This requires that you have adb version 1.0.31 (available with SDK Platform-tools r16.0.1 and higher)
in order to debug on a device running Android 4.2.2 or higher.

For more information about connecting to a device over USB, read Using hardware device

Connecting to STB using ADB

To make a connection between STB and PC it is necessary to:
Open command line on PC (by pressing Windows button + R)
Run cmd command
Drag adb.exe to console and press Enter
Connect adb host to device:

adb connect #.#.#.#
connected to #.#.#.#:5555

If the adb connection is ever lost:

Make sure that your host is still connected to the same network your STB is.
Reconnect by executing the «adb connect» step again.
Or if that doesn't work, reset your adb host and then start over from the beginning:

adb kill-server

Syntax

You can issue adb commands from a command line on your development machine or from a script.
The usage is:

adb [-d|-e|-s <serialNumber>] <command>

If there's only one emulator running or only one device connected, the adb command is sent to that
device by default.

If multiple emulators are running and/or multiple devices are attached, you need to use the -d, -e, or -
s option to specify the target device to which the command should be directed.

Commands

The table below lists all of the supported adb commands and explains their meaning and usage.

http://developer.android.com/tools/device.html

2025/03/13 00:06 3/4 Andriod Debug Bridge

- https://docs.infomir.com.ua/

Category Command Description Comments

Target device -d Direct an adb command to the only
attached USB device

Returns an error if more
than one USB device is
attached

Target device -e Direct an adb command to the only
running emulator instance

Returns an error if more
than one emulator
instance is running

Target device -s <serialNumber>
Direct an adb command a specific
emulator/device instance, referred to
by its adb-assigned serial number

See Directing Commands
to a Specific
Emulator/Device Instance

General devices Prints a list of all attached
emulator/device instances

See Querying for
Emulator/Device
Instances for more
information

General help Prints a list of supported adb
commands

General version Prints the adb version number

Debug logcat [option] [filter-
specs] Prints log data to the screen

Debug bugreport
Prints dumpsys, dumpstate, and
logcat data to the screen, for the
purposes of bug reporting

Debug jdwp Prints a list of available JDWP
processes on a given device

You can use the forward
jdwp:<pid> port-
forwarding specification
to connect to a specific
JDWP process

Data install <path-to-
apk>

Pushes an Android application
(specified as a full path to an .apk
file) to an emulator/device

Data pull <remote>
<local>

Copies a specified file from an
emulator/device instance to your
development computer

Data push <local>
<remote>

Copies a specified file from your
development computer to an
emulator/device instance

Ports and
Networking

forward <local>
<remote>

Forwards socket connections from a
specified local port to a specified
remote port on the emulator/device
instance

Port specifications can
use these schemes:
tcp:<portnum>
local:<UNIX domain
socket name>
dev:<character device
name>
jdwp:<pid>

Ports and
Networking ppp <tty> [parm]… Run PPP over USB, <tty> — the tty

for PPP stream
Note that you should not
automatically start a PPP
connection

Scripting get-serialno Prints the adb instance serial number
string

See Querying for
Emulator/Device
Instances for more
information

Scripting get-state Prints the adb state of an
emulator/device instance

http://developer.android.com/intl/ru/tools/help/adb.html#directingcommands
http://developer.android.com/intl/ru/tools/help/adb.html#directingcommands
http://developer.android.com/intl/ru/tools/help/adb.html#directingcommands
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus
http://developer.android.com/intl/ru/tools/help/adb.html#devicestatus

Last update:
2019/05/17 11:23 stb_android:faq:android_debug_bridge https://docs.infomir.com.ua/doku.php?id=stb_android:faq:android_debug_bridge

https://docs.infomir.com.ua/ Printed on 2025/03/13 00:06

Category Command Description Comments

Scripting wait-for-device
Blocks execution until the device is
online — that is, until the instance
state is device

Server start-server Checks whether the adb server
process is running and starts it, if not

Server kill-server Terminates the adb server process

Shell shell Starts a remote shell in the target
emulator/device instance

See Issuing Shell
Commands for more
information

Shell shell
[shellCommand]

Issues a shell command in the target
emulator/device instance and then
exits the remote shell

See Issuing Shell
Commands for more
information

More detailed information you can find on official website Android Debug bridge

From:
https://docs.infomir.com.ua/ -

Permanent link:
https://docs.infomir.com.ua/doku.php?id=stb_android:faq:android_debug_bridge

Last update: 2019/05/17 11:23

http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html#shellcommands
http://developer.android.com/intl/ru/tools/help/adb.html
https://docs.infomir.com.ua/
https://docs.infomir.com.ua/doku.php?id=stb_android:faq:android_debug_bridge

	[Andriod Debug Bridge]
	Andriod Debug Bridge
	Enabling adb Debugging
	Connecting to STB using ADB
	Syntax
	Commands

